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A method is suggested for determining the mean annual temperature differential for a single-layer slab in
an unheated building in the design of structures for climatic temperature effects.

Variation of the temperature of the outside air and the intensity of solar radiation is accompanied by a change in
the mean temperature of the structural elements of unheated buildings, which are least favorable from the point of view
of extreme annual temperature differentials,

The CNS (Soviet Construction Norms and Specifications) give no instructions regarding the choice of temperature
differentials in designing buildings for climatic temperature stresses, but merely specify the distances between expansion
joints.

Available climatic data permit the determination of the boundary conditions for calculating temperature fields in
structural elements, and hence the determination of temperature differentials for designing structures for climatic temp-
erature stresses.

However, the boundary conditions (temperature of outside air and intensity of solar radiation) are only statistical
means, so the accuracy of the solutions is limited.

An important special case is the determination of the annual temperature differential for slab-type elements. In
construction this is important for determining the climatic loads on the supporting columns of industrial buildings due to
thermal deformation of the roof, for determining the climatic loads on walls, and in a number of other cases,

As indicated above, climatic temperature stresses are the result of the action on the slab of the annual fluctuations
in air temperature and the total flux of solar radiation (direct and indirect), which is taken into account only for the
summer months,

Variations in the mean slab temperature cause uniform strains in the plane of the slab; the stresses produced in the
slab depend on how it is supported,

It will be assumed that the thermal waves from the annual air temperature fluctuations are not dsamped in theslab
(for thick slabs this assumption is not fully valid, but the damping of the annual waves can be calculated by the method
suggested below), and therefore that the mean temperature of the slab is equal to the mean temperature of the air during
the month in question.,

It will also be assumed that in the course of 24 hours the air temperature varies sinusoidally, with an amplitude
equal to the mean amplitude of the diurnal temperature fluctuations during the month in question.

The latter assumption is justified by the following considerations. In the design stage it is difficult to foresee pos-
sible combinations of the state of erection of the structure and variations of the outside air temperature. Thus the mean
temperature of the elements of a structure at the time when it becomes statically indeterminate is unknown. If a build-
ing is enclosed, for example, during the winter, this may coincide either with severe frosts or with thaws. Therefore,
only the most stable climatic factors should be introduced into the calculations. As regards the diurnal fluctuations of
the air temperature, the appropriate factor is the mean 24-hour amplitude of the outside air temperature given in CNS
II-A, 6-62, Table 2, The maximum monthly 24-hour amplitudes of the air temperature will also be found there, These
are observed only once a month, however, and are therefore not suitable for design purposes.

The proposed method has been brought to the stage of numerical solution for a single-layer slab. The reason for
this is that the majority of buildings under construction, including those with large prefabricated panels, have virtually
single-layer walls (not counting the texture layer); the roof slabs of indusirial buildings may also be considered as single-
layer, since in the majority of cases the insulation is added a considerable time after the erection of the slab; the build-
ing may thus remain for six months or more unheated and exposed to the full annual differential of climatic thermal
loading under the most unfavorable conditions.

Under the assumptions made above, the solution of the problem of determining the amplitude of the mean temp-
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slab temperature due to a constant heat flux at its outside surface for zero air temperature and convective heat transfer
with different coefficients o, and oy; b) determination of the amplitude of the mean slab temperature for.a sinusoidal
heat flux at the same surface, zero air temperature and convective heat transfer with coefficients oy and 043 ¢) deter-
mination of the amplitude of the mean slab temperature for harmonic oscillations of the air temperature at both faces of
the slab with the same coefficients oy and ;. The system of equations for the solution of the first problem has the form
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The mean temperature of the slab is then
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It should be noted that as the slab thickness decreases, i.e., when 8§ — 0, S?Hm ~ qgpfotg + ). The system of

equations for solution of the second problem has the form
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We shall seek a solution of the first of these equations in the form

9 = Asinkz+ Bcoskr. (2

We then find that A = C;h; + Cghy + Cghg + C4ly, B = C4hy + Cghy — Cohy — Cihy, where hy = sinpx shpx, hp =sinpxchpx,
hg = cos px shpx, hy = cospxchpx; va/aT; a = Mcy.

We shall further assume that, when x =6, hy,...,hs are equal to Hy, H,, Hs, Hy, respectively, The arbiwary con-
stants Cy, Gy, Cg, C4 are determined from the two remaining equations of the system in question. If we write
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then the arbitrary constants are expressed by the equations:
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The amplitude of the oscillations of mean slab temperature is
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Let us analyze the solution for p5§ — 0. In this case the temperature field will be stationary at any moment of time, and

the amplitude of the oscillations of the mean slab temperature must tend to qop(ctg + o)~

Thus, whenpd =0 D— (og + &j)/N, E~0, G~ qop/\, L=>0, C; =0, Cy = GD/D* = G/D = qypflcty + i) and in
Eq. (2), when pé = 0 A —>Cy X qoplcig + ¢4), while B—>(=C;) —> 0. Thus, when pd = 0 8y =Rploo + o)) X sin kr.
This can be shown in the same way for Eq. (8), if when p& — 0 the functions Hy, H,, Hg, Hy are expanded in powers of
pd. Thus, for a slab with low thermal inertia:

Tm=9Go0/(ao + a3). (4
The system of equations for the solution of the third problem has the form
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The result of solving this problem is similar to the foregoing solution; the coefficients D and E have the same form,
qop is replaced by a, 9 in the coefficients G, and L', and the term o4 9 /A is added in the coefficient G'. Then
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The expression for the amplitude of the mean slab temperature (3) does not change. Let us analyze the solution

when pé — 0. It is clear from physical considerations that in this case the amplitude of the mean slab temperature must
tend to %.
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Thus, when pé = 0 D — (&g + o)/, E=>0, G = (g + aj)AN)®%, L0, C; =0, C4 — GD/D?* = G/D = &, and in
(2), when ps =0, A > Cy — &, while B (—Cy) — 0. In this case

§am = g, (5)

Thus, for a slab with low thermal inertia, the temperature differential may be evaluated from the formula

- 1 3
At=tvl~—t1+—2—(ﬁ1 -+ Bvr) + 1 (6)*
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Values of t; and tyy, 91 and Sy, 95, o and o are given in CNS II-A, 6-62 and 7-62.

In the equation for At the amplitudes of the mean slab temperature due to the effect of solar radiation and fluctua-
tions of the air temperature are added, i.e., it is assumed that the fluctuations are in phase. In fact, they are displaced
by approximately 3 hours, and the maximum of the air temperature lags behind that of the solar radiation. It is a simple
matter to allow for this, but its influence on the final result is insignificant.

The prestressed concrete roof slabs of industrial buildings are 25 cm thick. Let us determine the annual temperature
differential for the Moscow area. According to CNS, t; = —10.3°, tyy = 15.4°, 8;= 7.8, 8y = 18.8", gz = 714 . 1. 163
w/m?, for concrete p = 0,65, oy = 20 « 1,163 w/m?® + degree, o4 = 7.5 + 1.163 w/m?® » degree. We obtain At = 53, 2 de-
grees.

*In CNS II-A, 6-62 double amplitudes of the diurnal fluctuations of the outside air temperature are given from the
standpoint of the calculations performed.
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A temperature differential of this kind, when the distances between expansion joints are great (of the order of
100 m), can impose severe loads on the columns, which must be taken into account in their design.

Thus (6) may be used as a first approximation for elements with low thermal inertia, Physically, this means that
there is a stationary temperature distribution in the slab at any moment of time, and therefore the thickness, and the
properties of the material of the slab, do not have an influence on the amplitude of the oscillations of mean slab temper-
ature; the latter is determined only by the intensity of the outside temperature influences and the heat transfer conditions,

It is more complicated to determine the climatic heat loads, when the thermal inertia of the siab must be taken
into account. To simplify the discussion and calculations, it is useful to introduce generalized coordinates, in this case
the similarity criteria of the thermal processes.

It can be established from dimensional analysis of the solutions obtained that the amplitude of the mean slab temp-
erature in the case of an harmonic heat flux enters into the Ki number and depends on Bi,, Bij, and ps:

a 3 . F T
4 l: % agd sq/ F ]
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In the case of harmonic oscillations of the air temperature, the amplitude of the mean slab temperature, as a frac-
tion of the amplitude of the air temperature oscillations, depends on these same parameters:

(N

In determining the form of relations (7) and (8), it was assumed that oy = 20 . 1. 163, oy =17,6+1.163 w/m? . de-
gree, and Bi varies only with 6 and \; since the slab is single-layer, it is sufficient to assign just one of the two param-

eters, for example Big.
Ki
a
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Fig, 1. Ki number (a) and phase shift A¢ of mean 10 -0 o
slab temperature relative to phase of heat flux of
solar radiation (b) as a function of thermal inertia
of slabD: 1—Biyj=0.5;2—10.75;3—1.0; 4—
1,75;5—2.5;6—~3,75;7—5,0; 8—17.5; 9—
10; 10 — 15; 11 — 20; 12 — 30; 13 — 40.

On the basisof the calculations, graphs expressing relations (7) and (8) were constructed (Figs. la and 2a). The phase
shift of the oscillations of the mean slab temperature relative to the phase of the heat flux and the phase of the air temp-
erature oscillations are given in Figs. 1b and 2b.

The behavior of the solar radiation in June may be described to a first approximation by the equations:

. 4= 3
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To obtain this flux it is sufficient to take three terms of the Fourier series:
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Let us determine, for example, the annual temperature differential for the Moscow area using the following data:
=20 cm, A= 0.6« 1.163 w/m - degree, ¢ = 0.84 . 10%y/kg « degree, ¥ = 600 kg/m®, Mey =5+ 107 mbr, o = 0.65.

From (1), taking into account the coefficient 3/2w, we have % = 6.4 degree. The quantity pé = 1,05; Biy = 6,7,

For these values, we find from Fig. 1a, 9gqm Mappd = 0,084, or, taking into account the coefficient 6/5r of the expan-
sion, we have 83 =5 degrees. From Fig. 1b the phase shift ¢ = 0,5 degree.

The(: third term of the expansion gives the same value Sﬁnm = & degrees, but with a phase lead of 7/2, The differ-
ence is 9y = 7.1 degrees with a phase shift of 45.5°.
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From Fig. 2a we find anm/«‘}o = 0.89, and a phase shift of approximately 0.6 degree (Fig. 2b). The hdlf-sum of
the mean January and June amplitudes of the air tempeyrature oscillations for Moscow is equal to 10.55 degrees. Thus,
from the diurnal oscillations of the air temperature 917 = 0.89 - 10.55= 9.4 degrees.

A check on the damping of the annual variation of the outside air temperature in the slab may be obtainedbycalc~
ulatring the value of ps with T = 24 . 365 hr, which gives (p8)ann = 0.055,

It can be seen from the graph that, for the given pé and Bi = 6.7, 92%/8; = 1, i.e., the annual temperature wave

in the slab is not damped; therefore the monthly mean temperature for January and June will be taken without correc- -
tion factors.

At At The air temperature maximum lags by approximately
50k \, 2 three hours the solar radiation maximum; we shall therefore
190 add to the phase shift from the air temperature oscillations a
45+ ‘ further —9m(3/24) = —7/4, i.e., the phases of the oscilla-
, , 60 tions of the mean slab temperature due to solar radiationand
400 ] 2 D air temperature practically coincide. Finally, we have: At =
Fig. 3, Comparison of results of calculations of an- = ty] — 17 = «9% + «‘}% + 91 = 48.6 degrees, The result ob-
nual temperature differentials for the Moscow area:  tained is less than that calculated from (6) by altogether only
1 — approximate method, 2 — exact method. 9.5%. Figure 3 shows the discrepancy between the annual temp-

erature differentials for the Moscow area calculated by the ap-
proximate and exact methods. As the thermal inertia of the slab increases, the exact method naturally gives smaller
values of the calculated annual temperature differential, but we may use the simpler approximate formula (6) when D =
= 2, for walls classified as "light” in the CNS, The thermal inertia D is linked with pé by the relation D = ¥2 ps.

NOTATION

T — period of harmonic oscillations; ¥ — temperatures 9 — amplitude of diurnal oscillations of air temperature;
qgr — steady heat flux; gy — amplitude of harmonic oscillations of heat flux; qy — maximum hourly value of total flux of
direct and indirect solar radiation; p — absorption coefficient for solar radiation in slab material; ¥, — mean slab temp-
erature; 3ranm — amplitude of oscillations of mean slab temperature; o,y and c; — heat transfer coefficients at outside and
inside faces; A, ¢,y — thermal conductivity, specific heat, and specific weight of slab material; 6 — slab thickness; tyg
and t; — monthly mean air temperatures for June and January; S and 91 — mean amplitudes of diurnal oscillations of
air temperature in June and January; At — theoretical annual temperature differential.
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