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A method is suggested for determining the mean annual temperature differential  for a s ingle- layer  slab in 
an unheated building in the design of structures for c l imat ic  temperature effects. 

Variation of the temperature of the outside air and the intensity of solar radiat ion is accompanied by a change in 
the mean temperature of the structural elements of unheated buildings, which are least  favorable from the point of view 
of extreme annual temperature  differentials.  

The CNS (Soviet Construction Norms and Specifications) give no instructions regarding the choice of temperature 
differentials in designing buildings for c l ima t i c  temperature  stresses, but mere ly  specify the distances between expansion 
joints.  

Avai lab le  c l ima t i c  data permit  the determinat ion of the boundary conditions for ca lcula t ing temperature  fields in 
structural elements,  and hence the determinat ion of temperature differentials for designing structures for c l ima t i c  t emp-  
erature stresses. 

However, the boundary conditions ( temperature  of outside air and intensity of solar radiation) are only stat is t ical  
means, so the accuracy of the solutions is l imi ted .  

An important  special  case is the determinat ion of the annual temperature differential  for s lab- type  elements .  In 
construction this is important  for determining the c l ima t i c  loads on the supporting columns of industrial  buildings due to 
thermal  deformation of the roof, for determining the c l ima t i c  loads on walls, and in a number of other cases~ 

As indica ted  above, c l ima t i c  temperature stresses are the result of the act ion on the slab of the annual fluctuations 
in air temperature and the total  flux of solar radiat ion (direct  and indirect) ,  which is taken into account only for the 
summer months. 

Variations in the mean slab temperature cause uniform strains in the plane of the slab; the stresses produced in the 
slab depend on how it is supported. 

It wil l  be assumed that the thermal  waves from the annual air temperature fluctuations are not damped in the slab 
(for thick slabs this assumption is not fully valid,  but the damping of the annual waves can be ca lcula ted  by the method 
suggested below), and therefore that the mean temperature of the slab is equal to the mean temperature  of the air during 
the month in question. 

It will also be assumed that in the course of 24 hours the air temperature varies sinusoidally, with an ampli tude 
equal to the mean  ampli tude of the diurnal temperature fluctuations during the month in question. 

The lat ter  assumption is justified by the following considerations. In the design stage it is difficult  to foresee pos- 
sible combinations of the state of erect ion of the structure and variations of the outside air temperature.  Thus the mean  
temperature of the elements of a structure at the t ime when it becomes s ta t ica l ly  indeterminate  is unknown. If a bui ld-  
ing is enclosed, for example ,  during the winter, this may coincide either with severe frosts or with thaws. Therefore, 
only the most stable c l ima t i c  factors shoutd be introduced into the calculat ions.  As regards the diurnal fluctuations of 
the air temperature,  the appropriate factor is the mean 24-hour ampli tude of the outside air temperature given in CNS 
II-A,  6-62, Table  2. The maximum monthly 24-hour ampli tudes of the air temperature will  also be found there,  These 
are observed only once a month, however, and are therefore not suitable for design purposes. 

The proposed method has been brought to the stage of numerical  solution for a s ingle- layer  slab. The reason for 
this is that  the major i ty  of buildings under construction, including those with large prefabricated panels, have vir tual ly  
s ingle- layer  walls (not counting the texture layer);  the roof slabs of industrial buildings may also be considered as s ingle-  

layer,  since in the major i ty  of cases the insulation is added a considerable t ime after the erect ion of the slab; the bui ld-  
ing may  thus remain  for six months or more unheated and exposed to the full  annual differential  of c l ima t i c  thermal  
loading under the most unfavorable conditions. 

Under the assumptions made  above, the solution of the problem of determining the ampl i tude  of the mean t emp-  

erature of the slab ~ m  = ~ dx reduces to the solution of three par t ia l  problems: a) determinat ion of the mean 
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slab temperature due to a constant heat  flux at its outside surface for zero air temperature and convect ive heat  transfer 
with different coefficients cz o and c~i; b) determinat ion of the ampl i tude  of the mean slab temperature  for a sinusoidal 
heat  flux at the same surface, zero air temperature and convect ive heat  transfer with coefficients c% and cci; c) deter-  
minat ion of the ampli tude of the mean slab temperature  for harmonic oscil lations of the air temperature  at both faces of 
the slab with the same coefficients c% and cx i .  The system of equations for the solution of the first problem has the form 

02~ 
~ = 0 ,  0 . 4 x ~ ;  

Ox 2 

k 0 ~  . . . . . .  + q s t P  % 0 = 0  when x = 0 ,  
Ox 

X=-Y--~ + ~ i ~ = 0  when x = g .  
Ox 

The mean temperature of the slab is then 

'k ~i ~ 
a)m = qst9 + - - - - ~ ;  [k (ct o + cti) + %~'i ~1-1' (1) 

am 
It should be noted that as the slab thickness decreases, i .  e . ,  when 6 --" 0, I~ m "-" qstP/(c% + cxi). The system of 

equations for solution of the second problem has the form 

0 ~ 0 ~  - - - a  , 0 ~ < x ~ ; :  
0 �9 Ox 2 

) 0 ~  + q 0 9 s i n k ~  ~ o t ~ = 0  w h e n x = 0 ,  
Ox 

k O~ + ~ x i { } = O  when x = ~ .  
Ox 

We shall seek a solution of the first of these equations in the form 

= A s i n k ~  + B c o s k z .  (2) 

We then find that A = Clhl  + Czh2 + C3h3 + C4h4, B = C4hi + C3h2 - C2h2 - Clht,  where h i = s inpx shpx, hz = sinpx chpx, 

h3 = cospx shpx, t!4 = cospxchpx ;  4"-~g~; a = t /cT,  

We shall further assume that, when x = 6, hl  . . . . .  h4 are equal to H~, H z, H3, H4, respect ively .  The arbitrary con- 

stants C1, C~, C3, C4 are determined from the two remaining equations of the system in question. If we write 

D = p ( H s - - H - O ) +  % + ~ i  H 4 +  %~i ( H ~ + H ~ ) ,  
), 2p ),-o 

E = p (Ha + H o) + ao -[- a~ H1 -Jr ~~162 (H2 - -  Ha), 
)~ 2p k 2 

G =  qop (H2 + H3) + H4 , 

L=O00 ' 

then the arbitrary constants are expressed by tile equations: 

GE ~ DL ~___.._~o (C~ + C1) qo P . 
C1=  E 2 -4- D ~ ; C2 =  2p k 2p ). ' 

EL + GD 
C a -  So ( C 4 - - C 3  qoP ; C 4 =  

21) ?, 2p "A E 2 -+- D-o 

The ampl i tude  of the oscillations of mean slab temperature  is 
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0 ' a m =  - - { I C t ( H . , - - H z ) - / C ~ ( H ~ - - H , t +  I ) + C z ( H ~ + H ~  1)-+- 
m 

1 
2p~ 

+ C~ (H2 + H~)] ~ + [C4 (H_~ - -  H~) + C~ (H~ --. H~ + 1) --  

- -  C~ (H~ + Ha  - -  1) - -  C1 (H2 + Ha)12} '/~ (a)  

Let us ana lyze  the solut ion for p6 --* 0. In this case the tempera ture  field will  be s tat ionary at any m o m e n t  of t ime ,  and 
the ampl i tude  of the osci l la t ions of the m e a n  slab tempera ture  must  tend to q0p(c% + c~i) -1. 

Thus, when p6 --, 0 D -o (CXo + oti)/X ' E --~ 0, G ~ qop/k,  L ~ O, C 1 ~ O, C4 -" GD/D 2 = G/D = q0p/(c~ o + off) and in 

Eq. (2), when p6 -~ 0 A -* C~ x q0p/(ao + cq), while B --, ( -C1)  --, 0. Thus, when 106 ~ 0 ffm = ~toP/(~ + ~xi)] x sin k~-. 
This can  be shown in the same way for Eq. (3), if when 1o6 ~ 0 the functions HI, H2, H~, H 4 are expanded in  powers of 
106. Thus, for a slab with low thermal  iner t ia :  

~m--~ q0 P/(% + ~i)  
The system of equat ions for the solut ion of the third problem has the form 

(4) 

"A - -  - -  

Ox 

k 
Ox 

a ~ o ~ 
= a ~ ,  O ~ x ~ ;  

0 �9 Ox 2 

e o [ ~ - - ~ 0 s i n k z ] = O  when x = O ; :  

q-  ai [x%-- @o s in  k ~] = 0 when x = ~. 

The result  of solving this problem is s imi lar  to the foregoing solution~ the coeff icients  D and E have  the same form, 

q0P is replaced by c%1~ 0 in the coeff icients  G O and L ' ,  and the term cql~ 0/k is added in  the coef f ic ien t  G' .  Then  

G'E - -  L 'D L 'E  + G'D 

C 1 =  E 2 + D 2 ; C~ = E ~ 4- D ~ ; 

C3 = ~(0 (Ct__ Cl)__ 0~0'~0 . C2 = (ZO (C4Js Cl) 0~0'0~0 
2p >, 2p k ' 2p k 2p k 

The expression for the ampl i tude  of the m e a n  slab tempera ture  (3) does not change .  Let us ana lyze  the solut ion 

when p6 --0 0. It is c lear  from physical  considerations that in this case the ampl i tude  of the m e a n  slab tempera ture  must  

tend to I~ 0. 

Thus, when 106 ~ 0 D ~ (cx o + oti) /k ,  E --, 0, G'  ~ (c~ o + c~i)/(k)~ 0, L --* 0, C 1 ~ 0, C 4 --, GD/D 2 = G/D = I~ 0, and in 
(2), when p6 -* 0, A ~ C4 ~ 80, while 13 --, (--C1) ~ 0. In this case 

atom = ~o. (5) 

Thus, for a slab with low thermal  iner t ia ,  the t empera ture  di f ferent ia l  m a y  be eva lua ted  from the formula 

1 qz p 
A t = t W -  t~ + -~- (~t + ~vr) + �9 (6)* 

ao + ai 

Values of t I and tvi, ~I and ~VI, qz, C~o and ~i are given in CNS II-A, 6-62 and 7-62. 

In the equation for &t the amplitudes of the mean slab tem10erature due to the effect of solar radiation and fluctua- 

tions of the air temperature are added, i.e., it is assumed that the fluctuations are in phase. In fact, they are displaced 

by approximately 3 hours, and the maximum of the air tem10eramre lags behind that of the solar radiation. It is a simple 

matter to allow for this, but its influence on the final result is insignificant. 

The prestressed concrete roof slabs of industrial buildings are 25 cm thick. Let us determine the annual temperature 

differential for the Moscow area. According toCNS, t I = -I0.3 ~ , tvi= 15.4 ~ ~I = 7.8 ~ &VI = 1S.S ~ qz = 714. 1.16S 

w/m 2, for concrete p = 0.65, ~o = 20 �9 1. 163 w/m 2 �9 degree, ~i = 7.5 �9 1.163 w/m 2 �9 degree. We obtain &t = 53.2 de- 

grees. 

*In CNS II-A, 6-62  double ampl i tudes  of the diurnal  f luctuat ions of the outside air t empera ture  are g iven from the 

s tandpoint  of the ca lcu la t ions  performed.  
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A temperature  differential  of this kind, when the distances between expansion joints are great  (of the order of 
100 m), can impose severe loads on the columns, which must be taken into account in their design. 

Thus (6) may be used as a first approximation for elements with low thermal  inertia.  Physically, this means that 
there is a stationary temperature distribution in the slab at any moment  of t ime,  and therefore the thickness, and the 
properties of the mate r ia l  of the slab, do not have an influence on the ampli tude of the oscillations of mean slab temper-  
amre; the latter is determined only by the intensity of the outside temperature influences and the heat  transfer conditions. 

It is more compl ica ted  to determine the c l ima t i c  heat  loads, when the thermal  inert ia of the slab must be taken 
into account.  To simplify the discussion and calculations,  i t  is useful to introduce general ized coordinates, in this case 
the s imilar i ty  cr i ter ia  of the thermal  processes, 

It can be established from dimensional  analysis of the solutions obtained that the ampli tude of the mean slab temp-  
erature in the case of an harmonic heat  flux enters into the Ki number and depends on Bio, Bi D and p6: 

vmm--f - - "  " ~ �9 (7) 

qoP ~ ;', ' )' ' 

In the case of harmonic oscillations of the air temperature,  the ampli tude of the mean slab temperature,  as a frac-  
tion of the ampli tude of the air temperature oscillations, depends on these same parameters:  

a m  am /0"o = q~[Bio, Bii, pS]. (8) 

In determining the form of relations (7) and (8), i t  was assumed that e% = 20 �9 1. 163, eq = 7.5 �9 1.163 w/m 2 . de-  

gree, and Bi varies only with 6 and X; since the slab is s ingle- layer ,  i t  is sufficient to assign just one of the two pa ram-  
eters, for example  Bi o. 

Kt 

Fig. 1. Ki number (a) and phase shift A~0 of mean 

slab temperature re la t ive  to phase of heat  flux of 
solar radia t ion (b) as a function of thermal inert ia 

of slab D: 1 - Bi I = 0.5;  2 -- 0.75; 3 -- i. 0; 4 -- 

1.75; 5 -- 2. 5; 6 -- 3.75; 7 -- 5 .0;  8 -- 7.5; 9 -- 
10; 10 -- 15; 11- -  20; 12 - -  30; 13 -- 40. 
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On the basis of the calculations,  graphs expressing relations (7) and (8) were constructed (Figs. l a  and 2a). The phase 
shift of the oscil lations of the mean slab temperature  re la t ive  to the phase of the hea t  flux and the phase of the air t emp-  
erature oscillations are given in Figs, lb and 2b. 

The behavior of the solar radiation in June may  be described to a first approximation by the equations: 

q = q0 sin 4= 
a 

- - ~  when 0 ~ v ~ < - - T - - - - -  18 hr �9 
3T 4 ' 

3 
q = 0  when - - T < ~ G T = 2 4  h r .  

4 
To obtain this flux i t  is sufficient to take three terms of the Fourier series: 

3 6 2= 6 2~.  
q-- 2= qo-}- 5= q o s i n ~  - - c o s  ~ =  

�9 T 5~ T 
3 6 2= 6 

2= q o §  T 5= q~ ( 2= @ )  
T 

(9) 
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Let us determine, for example, the annual temperature differential for the Moscow area using the following data: 
6 = 2 0 c m ,  X = 0 . 6 .  t .  1 6 8 w / m . d e g r e e ,  c =  0 . 8 4 .  10~T/kg.degree,  7 = 6 0 0 k g / m  3, k/c 7 = 5 .  10 -3m2hr, p = 0 . 6 5 .  

From (1), taking into account the coefficient 3/2~r, we have &m = 6 .4  degree. The quantity p6 = 1.05; Bi o = 6.7. 

am X/q0p6 = 0.084, or, taking into account the coefficient 6/5~ of the expan- For these values, we find from Fig. la, 8 m 
am sion, we have &m = 5 degrees. From Fig. lb the phase shift ~o -~ 0.5 degree. 

am The third term of the expansion gives the same value # m  = 5 degrees, but with a phase lead of ~r/2. The differ- 
ence is ~(m ~ = 7.1 degrees with a phase shift of 45.5 ~ 

Fig. 2. Ratio of amplitude of mean slab temper-  

ature to amplitude of air temperature (a) and 

phase shift of mean slab temperature relative to 

phase of air temperature oscillations (b) as a func- 

tion of thermal inertia of slab: 1 -- Bi 1 = 0.5; 

2-- 1.0; 3-- 2. 5; 4-- 5; 5-- I0; 6- 20; 7-- 30; 

8 -- 40. 

-t5 

am -f0 i 

0 2 ~ 6 Z? 

a m  
From Fig. 2a we find &m /&0 = 0.89, and a phase shift of approximately 0.6 degree (Fig. 2b). The hdlf-sum of 

the mean January and June amplitudes of the air temp.erature oscillations for Moscow is equal to 10.55 degrees. Thus, 

from the diurnal oscillations of the air temperature &~) = 0.89 �9 10.58 = 9 .4  degrees. 

A check on the damping of the annual variation of the outside air temperature in the slab may be obtained by ca lc-  

ulating the value of p6 with T = 24 �9 365 hr, which gives (p6)ann = 0. 055. 

It can be seen from the graph that, for the given p6 and Bi = 6.7, &am/l~ 0 = 1, i . e . ,  the annual temperature wave 

in the slab is not damped; therefore the monthly mean  temperature for January and June will be taken without correc- 

tion factors. 
at ~ \ lat 

05 

O00 ' , ~'18~ 
f 2 0 

Fig. 3. Comparison of results of calculations of an-  

nual temperature differentials for the Moscow area: 

1 - approximate method, 2 - exact method. 

The air temperature maximum lags by approximately 

three hours the solar radiation maximum;  we shall therefore 
add to the phase shift from the air temperature oscillations a 

further -2~r(3/24) = -7r/4, i . e . ,  the phases of the oscil la-  

tions of the mean slab temperature due to solar radiation and 

air temperature practicallv,_~ -,_,c~ Finally, we have: At = 

= tv i  - t i =  ~ ) +  l>~J+ I ~  ~ = 48.6 degrees. The result ob- 

tained is less than that calculated from (6) by altogether only 
9.5%. Figure 8 shows the discrepancy between the annual temp- 

erature differentials for the Moscow area calculated by the ap- 

proximate and exact methods. As the thermal inertia of the stab increases, the exact method natural ly gives smaller 

values of the calculated annual temperature differential, but we may use the simpler approximate formula (6) when D -< 

2, for walls classified as "lighf' in the CNS. The thermal inertia D is linked with p6 by the relation D = #-2 p6. 

NOTATION 

T - p e r i o d  of harmonic oscillations; ~ - temperature; I~0 - amplitude of diurnal oscillations of air temperature; 

qst - steady heat flux; q0 - amplitude of harmonic oscillations of heat flux; q~ - maximum hourly value of total flux of 

direct and indirect solar radiation; p - absorption coefficient for solar radiation in slab mater ia l ;  4> m - mean slab temp- 
am erature; I~ m - amplitude of oscillations of mean  slab temperature; cz o and a i - heat transfer coefficients at outside and 

inside faces; X, c , ] / -  thermal conductivity, specific heat, and specific weight of slab mater ia l ;  6 - slab thickness; tv i  

and t I - monthly mean air temperatures for June and January; &VI and $I  - mean  amplitudes of diurnal oscillations of 

air temperature in June and January; ZXt - theoretical annual temperature differential,  
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